Friday, 30 August 2024
Cultural and natural values of sacred sites - our new paper in Human Ecology
Sunday, 25 August 2024
Our new paper about grassland restoration by topsoil removal and topsoil transfer - published in BMC Ecology and Evolution
Our latest paper about grassland restoration by topsoil removal and topsoil transfer has been recently published in BMC Ecology and Evolution.
The paper is open access and can be freely downloaded from the journal homepage (please click here).
The citation of the paper:
Valkó, O., Kelemen, A., Kiss, O., Bátori, Z., Kiss, R., Deák, B. (2024): Grassland restoration on linear landscape elements – comparing the effects of topsoil removal and topsoil transfer. BMC Ecology and Evolution 24: 112. https://doi.org/10.1186/s12862-024-02299-y
Here we compared the effectiveness of the two methods for the restoration of alkaline grasslands. We surveyed vegetation development after topsoil transfer and topsoil removal after the elimination of former linear landscape scars. Topsoil removal supported a rapid vegetation recovery and several rare halophyte species became established in the restored site. Topsoil transfer was less succesful and the developing vegetation was characterised by fewer target species and several weeds. Since these methods are rarely applied in Hungary, our results can provide new insights for the planning and implementation of restoration projects that involve the elimination of landscape scars.
Abstract
Artificial linear landscape elements, including roads, pipelines, and drainage channels, are main sources of global habitat fragmentation. Restoration of natural habitats on unused linear landscape elements can increase habitat quality and connectivity without interfering with agricultural or industrial development. Despite that topsoil removal and transfer are widely applied methods in restoration projects, up to our knowledge these were previously not compared in the same study system. To address this knowledge gap, we compared spontaneous vegetation recovery after the elimination of positive (embankments) and negative landscape scars (drainage channels) in lowland alkaline landscapes in South Hungary. The novelty of our study is that we compared the fine-scale and landscape-scale results of both methods. At the fine scale, we monitored the spontaneous vegetation development on the created open surfaces in the first, second and fourth year after restoration in 160 permanent plots per year. For characterizing the habitat changes on the landscape scale, we prepared habitat maps and assigned naturalness scores to each patch before and after the restoration activities. Both restoration methods resulted in a rapid vegetation recovery at the fine scale, progressing toward the reference state. In the topsoil removal treatment, a large part of the soil seed bank was removed; therefore, the colonization of the bare surface was a slower process. Seeds of halophytes, including the endemic and protected Suaeda pannonica, were probably present in the deeper soil layers, and these species became established in the restored surfaces, despite being absent in the surrounding vegetation. For restoring vegetation cover, topsoil transfer was a more rapid option; however, vegetation closure and competition by generalist species and weeds hampered the establishment of target species. The removal of the landscape scars by both methods made the sites accessible for grazing. At the landscape scale, the two methods had different effects: there was a slight increase in the habitat naturalness in the topsoil removal site, and a slight decrease in the topsoil transfer site because of weed encroachment. Spreading an upper layer of nutrient-poor soil with low amounts of weed seeds, direct propagule transfer, and targeted grazing regimes could enhance restoration success.
Monday, 19 August 2024
Our new review about urban grassland restoration has been published in Journal of Environmental Management.
Our latest paper, a global review about urban grassland restoration has been published in Journal of Environmental Management. This is a result of a nice cooperation between our research group and Valentin Klaus (ETH Zürich) and Leonie Fisher (University of Stuttgart).
The paper is open access and can be freely downloaded from the journal website (please click here).
Citation
*Fekete, Réka, *Valkó, Orsolya, Fischer, Leonie, **Deák, Balázs **Klaus, Valentin (2024): Ecological restoration and biodiversity-friendly management of urban grasslands – a global review on the current state of knowledge. Journal of Environmental Management 368: 122220.
*, **: equal contributions.
Urban grasslands, like parks, meadows, vacant lots and other green spaces, play a crucial role in enhancing biodiversity in cities. However, as urbanization accelerates, these green spaces are increasingly threatened by factors like habitat degradation, pollution, and human activities. Our recent review explores the best strategies for restoring and managing urban grasslands to support biodiversity, focusing on lessons learned from various global studies.
The results of the review in numbers - location of the reviewed studies, and data on city population, site type, studied taxa, and main interventions. |
The review found that restoration efforts in urban grasslands can indeed boost biodiversity, but the outcomes vary depending on factors such as the methods used to prepare the soil, the types of species introduced, and the specific conditions of each site. For instance, some sites benefit from introducing native plants, while others may need specific soil treatments or adjustments to local management practices. The success of these efforts also depends on maintaining diverse habitats, reducing mowing frequency, and avoiding the use of chemicals, all of which can create a more favourable environment for a wide range of species.
One key recommendation from our review is to create a network of interconnected green spaces across cities. This could involve enhancing connectivity between parks, vacant lots, and even small patches of green space that act as "stepping stones" for wildlife. Maintaining spontaneous vegetation in unused areas, like vacant lots, can also provide valuable habitats for various invertebrate species, which are essential for the overall ecosystem. Additionally, evaluating soil conditions before starting restoration projects is crucial, as the existing soil's seed bank and nutrient levels can significantly impact the success of the restoration.
The review also highlights the importance of shifting towards low-intensity, biodiversity-friendly management practices in urban grasslands. For example, reducing the frequency of mowing and eliminating the use of fertilizers and chemicals can significantly enhance biodiversity while also reducing maintenance costs. Using native, drought-tolerant species that require little to no irrigation is another cost-effective strategy, particularly as cities face the challenges of climate change.
However, we also identified several knowledge gaps that need to be addressed in future research. For instance, more studies are needed to understand the large-scale effects of urban grassland restoration, such as how these efforts impact entire cities or regions. Additionally, research is lacking in certain parts of the world, particularly in the Global South, and in cities of particulars sizes (especially small cities and mega-cities). Understanding how different local factors interact to influence restoration outcomes is essential for developing more widely applicable guidelines for urban grassland management.
In conclusion, while there is clear evidence that urban grassland restoration can enhance biodiversity, the success of these efforts depends on a variety of factors, including local conditions, management practices, and the specific methods used. By addressing the identified knowledge gaps and continuing to refine our approaches, we can better support biodiversity in urban environments, ultimately contributing to healthier and more resilient cities.
Abstract